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For numerical simulation of drainage of a liquid from a volume of arbitrary cross section the Navier-Stokes 

equations for an incompressible liquid are used. Formulation of and an algorithm for solution of the initial- 

boundary-value problem and results of calculations of drainage from symmetric and nonsymmetric volumes 

are considered. Isolines of the Cartesian velocity components, distributions of the velocity vectors, and the 

position of the free surface for different moments of time are presented. Calculations are performed within 

the framework of a package of applied programs developed by the author for solving the of Euler and 

Navier- Stokes equations. 

1. Introduction. Success in the field of hydromechanics has been achieved recently due to improvements in 
numerical methods of solving the Navier-Stokes equations and due to an increase in the memory and speed of 

computers. A wide circle of problems relates to investigation of the motion of a liquid with free surfaces [ 1-5 ]. In 
most works touching upon drainage of liquids from volumes the model of vortex-free flows of an incompressible 
liquid [4 ] or the Stokes model for slow flows of high-viscosity liquids [5 ] was used. Results of numerical simulation 

of the drainage of a viscous incompressible liquid from volumes of different cross sections on the basis of the 
Navier-Stokes equations with the change in the shape of the free surface taken in consideration are given below. 
A versatile package of applied programs developed by the author for numerical solution of the Navier-Stokes  and 

Euler equations [6 ] was used in the calculation. 
2. Formulation of the Problem. By introducing scales for the quantities sought and for the independent 

variables, the system of equations of motion of a viscous incompressible liquid can be brought into dimensionless 

form [31: 
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div V = 0 .  

If the components of the velocity vector relative to a Cartesian system of coordinates are left as dependent 

variables and approximation of the Navier-Stokes equations for an incompressible liquid by means of the method 
of artificial compressibility [7 ] is used, then after passage to an arbitrary system of curvilinear coordinates the 

initial equations (1) for two-dimensional plane and axisymmetric flows can be written in the following manner: 
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where 
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is the Jacobian of the transformation of coordinates. The metric coefficients 

are defined in terms of derivatives of the Cartesian coordinates of the points, which depend on the time, with the 

aid of the relations 

~x = JYrl '  ~ y =  - J x r l '  

' i x  = - . Iy~  , ,Ty = J x ~ ,  tit = -- X ~ x  -- ytrly.  

(3)  

In calculating axisymmetric flows on the basis of the system of equations (2), the terms distinguishing the 

system of equations with axial symmetry from the plane one were included in the source term H. The metric 

coefficients (3) and the Jacobian of the coordinate transformation were modified accordingly. 

The system of equations was closed by initial and boundary conditions. At the initial moment of time the 

liquid was at rest, and the volume was full. The shape of the free surface was flat. The flow in the drainage orifice 

was a given constant, with a profile in the form of the Poiseuille solution, or else the flow and the velocity profile 

were calculated in the process of solution. At the axis of the volume, conditions of axial symmetry must be fulfilled. 

Conditions of adhesion were given for the walls. 

The position of the free surface was determined in the process of solution from the kinematic condition [2 ] 

Of + ~ Vf = 0 (4) 
dt 

where y = f ( x ,  t) is the equation of the free surface. Here, dynamic boundary conditions [2-5 ] must be fulfilled: 

~ f i  ~ = O , -~ f i  n = - p o  . ( 5 )  

Capillary forces were considered small in comparison to viscous and gravitational ones and were ignored. 

In the calculation a system of arbitrary nonorthogonal coordinates was used. Mapping of the physical region 

(x, y) bounded by the walls of the volume, the axis of symmetry, the free surface, and the drainage orifice onto 

the square calculational region (~, r/) is given by the equations of the transformation of coordinates ~ = ~(x, y, t), 
r/= 7/(x, y, t), where ~ and r/are the solution of the Dirichlet boundary-value problem for the system of equations 

of elliptic type [8] 

02~ + 0z~ p(~,~/) ~ +  0_~ Q(~,~/) (6) 
Ox 2 Oy 2 Ox 2 Oy 2 " 

Here P(~, 17) and Q(~, ~/) are the functions with whose aid regulation of the coordinate lines was implemented. 

If the roles of the dependent (~, 7/) and independent (x, y) variables are exchanged, we arrive at a coupled 

system of equations: 
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in which A = x~ , 

3. Numerical Method. Solution of the system of equations (7) for determination of the coordinates of the 

nodal points at each time step was implemented by the method of upper relaxation. 

In solving the system of equations (2), an implicit factorized scheme of Beam-Warming type was used [9 ]: 
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where A, B, M, N are Jacobi matrices obtained in lincarizing the vectors E, F, T, relative to the values at the 
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In Eqs. (8) h can be equal to At or At~2. For solving the matrix system of linear algebraic equations the method 

of vector run was used. 
The suggested approach to simulation of the dynamics of a liquid with moving boundaries reduces to making 

use of one of the numerical methods of solving the Navier-Stokes equations in arbitrary curvilinear coordinates 

and an algorithm for singling out the moving boundaries. This approach can be implemented with the aid of a 

package of applied programs [6 ] developed by the author. Testing of the numerical methods used was carried out 

on the problem of the interaction of a compression jump with a laminar boundary layer [10, 11 ]. Here, numerical 
algorithms were selected so as to compare the implicit, explicit, and mixed implicit-explicit difference schemes lying 

at the basis of the method. Results of the calculations, expenditure of machine time, and the Courant number were 

compared. The algorithm for singling out the moving boundaries was tested on the problem of singling out shock 

waves in a supersonic flow around a circular cone at a large angle of attack [ 12, 13 ]. 

4. Discussion of the Results. In the present work, results of calculations obtained with the aid of the 

Beam-Warming difference scheme [9] are represented. Repetition of the calculations with the aid of other 

difference schemes available from the package of applied programs (predictor-corrector, explicit-implicit, increased 

accuracy, etc.) did not present great difficulties. 
To check the workability of the approach considered above for calculation of drainage of a liquid from a 

volume on the basis of the Navier-Stokes equations, test calculations of drainage from a cylindrical volume 

investigated theoretically and experimentally in [4 ] were performed. Profiles of the free surface for three moments 

of time are given below. Experimental results [4 ] (points) and calculations of the present work (curves) are given 

in Fig. 1. In the calculations the dimensionless combination W = pgR2/tuU, which characterizes the ratio between 

the gravitational and viscous forces, was W = 4.85, and the dimensionless height of filling H o = H / R  = 6.25; results 

are given for different moments of time with a narrowing coefficient, which characterizes the ratio of the cylindrical 

volume's radius to the drainage-pipe radius, Ho/r = 2.5. 
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Fig. 1. Position of the free surface during drainage from a volume with axial 

symmetry (experiment from [4]): a) t--8.9,  b) 15.6, c) 26.0. 

Fig. 2. Shape of the free surface and distribution of the Cartesian components 

of the velocity vector during drainage from a contoured volume: a) t -- 0.5, b) 

1.0, c) 1.35. 
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Fig. 3. Distribution of the velocity vectors in the volume of a liquid during 

drainage. 

Fig. 4. Position of the free surface during nonsymmetric drainage from a 

volume: a) t = 0.4, b) 0.8, c) 1.2. 

The remainder of the mass at the moment when the free surface reaches the drainage orifice is an important 

characteristic of the volume from which the liquid drains. Profiling the bottom of the volume makes it possible to 

decrease this remainder. Numerical calculations of drainage of a liquid from a volume with a contoured shape of 

the walls of the drainage orifice (Figs. 2, 3) were carried out on plane models. Results are presented for three 

moments of time; the dimensionless combination that characterizes the drainage of the liquid from the volume was 

selected to be W= 1000. The velocity of the liquid in the output orifice was determined in the course of calculation. 

Shapes of the free surface and isolines of the Cartesian components of the velocity vector are represented in Fig. 

2. The isolines are drawn via the values of Au and Av, starting from zero values of the velocity components, which 

correspond to the walls of the volume. Velocity vectors are represented in Fig. 3. As the liquid moves out of the 

volume, a flow with a velocity profile close to parabolic forms in the output orifice.-The flow that arose in the 
drainage orifice carries along masses of liquid located above the drainage orifice. Liquid from the periphery does 

not manage to fill the region near the plane symmetry; this leads to deterioration of evenness and collapse of the 

free surface, formation of a funnel, its touching of the drainage orifice, and breakthrough of gas into the drainage 

line through the drainage orifice. 
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The physical picture in side drainage of a liquid from a volume is characterized by great complexity. 

Positions of the free surface for three moments of time are presented in Fig. 4. Deviation of it toward the drainage 

orifice is noticeable. 

C O N C L U S I O N S  

For numerical simulation of drainage of a liquid from volumes of arbitrary cross section the Navier-Stokes  

equations for an incompressible liquid are used. 

1. Formation of and an algorithm for solution of the initial-boundary-value problem and results of 

calculations of drainage from symmetric and nonsymmetric volumes have been considered. 
2. Pictures of the flow of a liquid at different moments of time have been obtained. This makes it possible 

to evaluate the remainder of the liquid not taken in, which makes a great impact on the functioning of many technical 

devices of metallurgy, chemical technology, transport, etc. 

N O T A T I O N  

~t~ A A 
, B, Jacobi matrices of the vectors of the convective flows; E ,  F, vectors of the convective flows; J ,  Jacobian 

of the transformation of coordinates; M, N, Jacobi matrices of the dissipative terms;An, number of the time layer; 
q~, vector of the dependent variables; Re, Reynolds number; t, time; At, step in time; T, S, vectors of the dissipative 
terms; U, characteristic velocity; H, source term, depth of the volume; R, radius of the volume; r, radius of the 

drainage pipe; g, free-fall acceleration; u, v, components of the velocity vector in Cartesian coordinates; x, y, 
Cartesian coordinates; ~, r/, curvilinear coordinates linked to the surface of the volume; ~x, ~y, T/x, r/y, metrical 

coefficients of the transformation of coordinates; p, density;/~, dynamic viscosity coefficient; ~, central difference 
operator; A, V, operators of the left and right differences; Po, pressure on the free surface; "V, velocity vector; p, 

pressure; ~, parameter of the artificial-compressibility method; /~ = -pT+ 2~E, strain tensor; T, unit tensor; E, 
tensor of deformation rates; ~, 3, unit vectors perpendicular and tangent to the free surface; y = .f(x, t), equation 

of the free surface. 
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